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Abstract

The goal of this paper is to demonstrate that the difficulty of detecting Unruh radiation in Minkowski
spacetime can be overcome by using a mathematically analogous system to model it. In this way, we will

be able to measure the effect in a different setting while still accounting for the system’s most basic
features. We will show that the necessary system can be found by considering a pair of coupled optical

cavities. We will outline how detection of radiation is to be performed in both systems, and how the two
processes are related to each other.
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1 Introduction

The Unruh effect expresses a prediction that in Minkowski spacetime an accelerating observer and an inertial
observer will observe empty space differently. The first will detect thermal radiation which will have a finite
temperature associated with it, while the latter will not detect any radiation. We call a uniformly accelerating
observer a Rindler observer. The stated prediction can be generalized to curved spacetimes in the form of the
Hawking effect. Birrell and Davies do this in Quantum Fields in Curved Space [1] by using similar techniques
to what we will see in the examination of flat spacetime, so this prediction is in fact very general.

The phenomenon of Unruh radiation, and likewise Hawking radiation, is of great interest to us since it has
a connection to the study of information in black holes. Unfortunately, the temperature of interest is hard to
detect experimentally. To see why, we need to take a look at the expression for the Unruh temperature which
we will derive in Section 5. It is given in units where c = 1 by T = ~a

2πkB
, where a is the proper acceleration

of the detector of radiation. Since ~ is extremely small, the acceleration required to produce a temperature
of just 1 mK is a staggering 2.46 × 1017 m

s2 . In order to manage this problem, we look for another system
which closely mimics this one in the mathematical sense, and to some extent physical sense, but which is
easier to create in a laboratory. We want the essential properties of the system to remain the same, but the
temperature to become more experimentally accessible to us. The hope is that given the strong analogy,
the predictions we make for one of the systems will hold for the other one as well. One might ask why
analogous physical behavior is expected in systems between which we draw a mathematical analogy. We
argue for this as follows. To claim otherwise, i.e. that mathematically analogous systems do not yield the
same physical behavior, requires one to accept that the mathematical description we give does not capture
everything about at least one of the systems. However, in our discussion, we begin with the assumption that
we successfully capture all essential features of the systems of interest in their mathematical treatment. As
long as we have this assumption, the argument from analogy must follow. Since this is the standpoint from
which much of theoretical physics operates, it is not unreasonable to make this assumption in this paper.
Further refinements of our knowledge of the systems may arise, of course, but since both systems examined
in this paper are indeed very well-studied, our assumptions are well-founded.

The analogy is developed as follows. In the case of the Unruh effect in Minkowski spacetime, we have
two wedges of spacetime causally separated from each other. We call this space Rindler space. When
we quantize a scalar field in Rindler space, because of the causal separation between the wedges, we have
access to two distinct bases of modes to describe any operators in that setting. The two sets of modes are
related by a Bogoluibov transformation, as is shown in Section 5, and in more detail in [8]. The same kind of
transformation arises in the system made up of two coupled harmonic oscillators. This transformation relates
raising and lowering operators from two settings: those annihilating the ground state of the Hamiltonian with
the coupling term, and those annihilating the ground state of the Hamiltonian without the coupling term.
The similarity captured by the Bogoluibov transformations is what allows us to expect a similar behavior in
both the Rindler and coupled oscillator cases.

In the case of the Rindler observer, we restrict their attention to just one of the wedges (since they simply
do not have access to the other one) and perform a measurement of the vacuum as defined by one of the two
sets of modes. We use a device which is capable of counting photons and detecting whether a state is excited.
As we shall verify in Section 5, we obtain a thermal distribution of particles. Analogously, in the case of
the coupled optical cavities, we obtain a temperature by also restricting the measurement to one of the two
cavities, which is mathematically modeled by tracing over the Hilbert space of the other subsystem. In this
way, we trace over the degrees of freedom inaccessible to us. In both scenarios, the notion of temperature
arises as a result of focusing on only one of subsystems.

Now that we have sketched the aspects of the two systems which contain the necessary analogies, we can
study them in more detail. We begin by examining the perhaps more familiar of the two settings: the optical
cavity and the emergence of harmonic oscillator behavior in it. We will also use the term “cavity QED” to
refer to this system.
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2 Cavity QED

Figure 1: Optical cavity with reflective walls. ω is the characteristic frequency of the system.

Our first step in setting up the more experimentally accessible system is to establish how we can physically
model a harmonic oscillator. This can be accomplished by using photons trapped inside an optical cavity.
The setup is pictured in figure 1, adapted from [5]. The two sides of the cavity are mirrors, so that a standing
electromagnetic wave can form. We shall see in this section that harmonic oscillator behavior arises when
we quantize the electromagnetic fields in the cavity and promote all dynamical quantities to operators. As
it stands, this is not sufficient to model the Unruh effect, so we will go one step further and add another
cavity such that the two interact. Since photons in each cavity have harmonic oscillator behavior, this will
give the desired coupled harmonic oscillator system.

2.1 Quantizing the fields

We now perform the quantization of the electromagnetic field in a cavity, which we take without loss of
generality to be one-dimensional. The reason we are not losing much information by only considering
one dimension is that the discussion which follows readily generalizes to the full three dimensions through
linearity and homogeneity of the equations involved via the use of the separation of variables method. The
full derivation without appealing to this implicit argument can be found in [4].

We take a one-dimensional cavity of width L in the ẑ direction. We first need to pick the polarization
of the electric field in the cavity. Since the electric field cannot be polarized in the same direction as that
in which the wave associated with it propagates, without loss of generality let us choose it to be polarized
in the x̂ direction. Solving the wave equation for the electric field obtained from the Maxwell equations, we
get (using V to denote the volume of the cavity):

∂2Ex
∂z2

=
1

c2
∂Ex
∂t

(1)

∴ Ex(z, t) =

√
2ω

V ε0
q(t) sin(kz) (2)

Then, we can use Ampere’s law to obtain a similar expression for the magnetic field:

∇×B = µ0ε0
∂E

∂t
(3)
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∴ By(z, t) =

√
2µ0

V
q̇(t) cos(kz) (4)

Imposing the boundary conditions at z = 0 and z = L which require the electromagnetic field to vanish,
we obtain that k = nπ

L , n ∈ Z≥1.

From these expressions, we obtain the Hamiltonian

H =
1

2

∫
dV

(
ε0E

2
x(z, t) +

B2
y(z, t)

µ0

)

=
1

2

(
q̇2(t) + ω2q2(t)

) (5)

This is exactly the Hamiltonian of a simple harmonic oscillator. We can in the usual way promote all
dynamical quantities to operators, where we now write momentum as p(t) = q̇(t). Raising and lowering
operators can be defined using these promoted quantities as

â(t) =
1√
2~ω

(ωq̂(t) + ip̂(t))

â†(t) =
1√
2~ω

(ωq̂(t)− ip̂(t))
(6)

These are exactly the operators we know from studying the quantum mechanical harmonic oscillator
system. Thus, by performing the quantization, we have shown that in this setting photons behave like
harmonic oscillators. We can attribute this behavior to the fact that the boundary conditions at the edges
of the cavity impose a countably infinite discrete spectrum of allowed frequencies, and so force photons into
a regime with few excitation modes.

In order to use this to study the Unruh effect, we now need to introduce coupling. This is done by adding
another cavity such that the two cavities interact. In Section 5 when we examine Rindler space, we will
see that the formalism we are about to explore is repeated: the fact that two causally separated wedges of
spacetime are permeated by the same scalar field will result in similar mathematical relations.

The picture we want to have in mind when we think of two coupled cavities is shown in figure 2, reproduced
from [10].

Figure 2: Interacting cavities with indicated energy spacing. In our case, the associated frequencies ωa and
ωb are the same frequency ω.

Each of the cavities is individually described by its own harmonic oscillator Hamiltonian with a charac-
teristic frequency, which in our case is the same for both. Once we introduce coupling, the interaction is
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modeled by adding to the Hamiltonian the term ~g(a†+ a)(b†+ b) which results in terms involving products
of operators associated with different oscillators. This will alter the evolution of the system, as we will now
show in Section 2.2.

2.2 Modeling coupling with a quantum beam splitter

We want to better understand the Hamiltonian resulting from introducing coupling in figure 2. With this in
mind, consider the Hamiltonian (7), where the parameter α quantifies the extent to which the two cavities
interact.

Hosc = ~ω(a†a+
1

2
) + ~ω(b†b+

1

2
) +mα2(a+ a†)(b+ b†) (7)

This is a slight modification of the Hamiltonian in figure 2. The mass parameter m does not actually
have to represent a physical mass, but can instead contribute to quantizing how strong coupling between the
two cavities is. (In figure 2, g was used instead of mα2.) This is to account for the fact that photons and
electromagnetic fields do not have mass, but a Hamiltonian of the form Hosc can still be applied to study
harmonic oscillator behavior of these massless objects. However, to make the model easier to understand,
we can at first think of m as a physical parameter. This will be the approach taken in Section 3.

We can gain a better understanding of the physical picture by interpreting the terms in Hosc as shown
in figure 3. In this way, we can think of the barrier separating the two cavities as a beam splitter.

Figure 3: Hamiltonian Hosc interpreted as a quantum beam splitter.

The two sets of operators correspond to the two sides, or optical cavities. Mixed terms correspond to
allowing the two sides to interact and so for photons to pass across the “barrier”. Especially notable are the
terms ab and a†b†, which would not have been present in the classical limit of a beam splitter because they
do not conserve energy in the classical sense. For example, the term a†b represents a photon passing from
the left cavity to the right one. Similar interpretations hold for the other terms, bearing in mind that an
annihilation operator removes a photon, while a raising operator creates one.

The purpose of highlighting the beam splitter interpretation of (7) is to gain a better understanding of
the connection we are making between coupled oscillators and optical cavities. The beam splitter is one way
of establishing coupling between optical cavities on either side of the barrier - from figure 3 we see the clear
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interpretation of the various terms. Since the beam splitter is a realizable optical setup, it directly gives
us a viable experimental model for coupling. Although to establish how exactly coupling is to be achieved
in a laboratory is not the purpose of this paper, it is useful to have this idea complement our theoretical
picture. As we shall see in Section 3.2, a temperature can be associated to this system. We will show that
experimentally, this temperature can be measured by counting photons which end up at a detector positioned
on the specified side of the division.

3 The coupled harmonic oscillator

Introducing the coupling Hamiltonian is the first step to understanding how temperature arises in this
system. To progress further, we now need to formalize our mathematical understanding of the ground state
of the coupled harmonic oscillator. We will connect these examinations to the physical picture by showing
that by only considering what happens to one of the two coupled subsystems, we obtain a physical notion
of temperature. Our task is most easily accomplished by first going back to the more classical picture of
viewing coupling as connecting two masses with springs. Once we understand this simpler picture, we can
then promote all dynamical quantities to quantum mechanical operators and return to the more abstract
operator picture we started with, which can be directly applied to the study of photons.

3.1 The Hamiltonian

We take two identical particles of mass m. The coordinates x1 and x2 correspond to the positions of the
two oscillators. Note that we will slightly modify the form of the Hamiltonian (7) to make the mathematical
treatment easier, but the essential features are kept the same.

Let us examine the components of the Hamiltonian carefully. First, we have the usual uncoupled harmonic
oscillator component which acts on the particles symmetrically:

H0 =
p2

1

2m
+

p2
2

2m
+

1

2
mω2(x2

1 + x2
2) (8)

The angular frequency parameter ω indicates the strength of this potential. Secondly, we have the
coupling term between the particles. It is written as

Hcoup =
1

2
mα2(x1 − x2)2, (9)

The parameter α indicates the strength of the coupling.

In full, the coupled system is described by the sum of these terms:

Hosc =
p2

1

2m
+

p2
2

2m
+

1

2
mω2(x2

1 + x2
2) +

1

2
mα2(x1 − x2)2, (10)

The subscripts i = 1, 2 label position and momentum operators associated with the first and second
particles respectively. We set m = 1 from now on to make notation simpler.

The momentum and position operators have the usual raising and lowering operators associated with
them, which we write for indices j = 1, 2 as

aj =
1√
2ω

(pj − iωxj), a†j =
1√
2ω

(pj + iωxj). (11)
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These satisfy the usual bosonic commutation relations

[aj , a
†
k] = δjk, [aj , ak] = [a†j , a

†
k] = 0. (12)

We are interested in finding the ground state of the system described by the Hamiltonian in (10). The
first step in doing this is switching to a coordinate system where the Hamiltonian does not have the cross
term. In other words, we want to diagonalize it. Consider the following coordinates x+, x− which we call
“normal”:

x+ =
x1 + x2√

2
, x− =

x1 − x2√
2

p+ =
p1 + p2√

2
, p− =

p1 − p2√
2

.
(13)

The transformed Hamiltonian is given by:

Hosc =
p2

+

2m
+
p2
−

2m
+
m

2
ω2x2

+ +
m

2
(ω2 + 2α2)x2

− (14)

We see that this is just a direct sum of two independent (non-interacting) quantum harmonic oscillators,
with their respective frequencies

ω1 = ω and ω2 =
√
ω2 + 2α2 (15)

The new coordinates give us new raising and lowering operators in the standard way for two harmonic
oscillators:

a+ =
1
√
ω1

(p+ − iω1x+), a− =
1
√
ω2

(p− − iω2x−) (16)

This allows us to write the Hamiltonian as

Hosc = ~ω1a
†
+a+ + ~ω2a

†
−a− (17)

We can interpret these two eigenmodes as two normal modes associated with this system, as depicted
in figure 4 reproduced from [3]. The frequency ω1 corresponds to the mode where the two masses oscillate
in the same direction at this frequency, while ω2 corresponds to the mode where they oscillate in opposite
directions each with this frequency.

We can one final time rewrite Hosc to make it easier to find the ground state. This is done by defining
new raising and lowering operators:

b1 =
a1 − ξa†2√

1− ξ2
, b2 =

a2 − ξa†1√
1− ξ2

,

where ξ =
ω1 − ω2

ω1 + ω2
.

(18)
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Figure 4: Eigenmodes of two coupled harmonic oscillators: (B) symmetrical and (C) asymmetrical. (D) shows
time evolution of the system when only oscillator (a) is excited, where xa and xb represent displacement
from equilibrium (the dotted lines) of oscillators a and b respectively.

We verify that they satisfy the usual bosonic commutation relations, using the ones we already know for
aj , a

†
j :

[bj , b
†
k] =

1

1− ξ2
[aj − ξa†k, a

†
k − ξaj ] =

1

1− ξ2

(
[aj , a

†
k]︸ ︷︷ ︸

δjk

−ξ[aj , aj ]− ξ[a†k, ak] + ξ2 [a†k, aj ]︸ ︷︷ ︸
−δjk

)
= δjk

[bj , bk] =
1

1− ξ2
[aj − ξa†k, ak − ξa

†
j ] =

1

1− ξ2

(
[aj , ak]− ξ[aj , a†j ]− ξ[a

†
k, ak] + ξ2[a†k, a

†
j ]
)

= 0

∴ [b†j , b
†
k] = −[bj , bk]† = 0

(19)

Also, we redefine frequencies to get

ω+ =
1− ξ
1 + ξ

, ω− =
1 + ξ

1− ξ
(20)

Using these operators and frequencies, we can rewrite our Hamiltonian as

Hosc = ~ω+b
†
1b1 + ~ω−b†2b2 (21)

We shall for later purposes call the modes associated with these new operators and frequencies the “cou-
pling modes”, contrasted with the number modes characterized by the operators in (11) and the frequency
ω.

Now, based on the new variables, we guess an ansatz for the ground state of Hosc:

|Ψ〉 = A
∑
n

ξn |n, n〉 (22)

Acting with the annihilation operator b1 on this state, we obtain 0:
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b1 |Ψ〉 =
A√

1− ξ2

∑
n

ξn
(
a1 − ξa†2

)
|n, n〉

=
A√

1− ξ2

( ∞∑
n=1

ξn
√
n |n− 1, n〉 −

∞∑
n=0

ξn+1
√
n+ 1 |n, n+ 1〉

)

=
A√

1− ξ2


∞∑
n=1

ξn
√
n |n− 1, n〉 −

∞∑
n=1

ξn
√
n |n− 1, n〉︸ ︷︷ ︸

relabel n+1→ n

 = 0.

(23)

Due to the similarity of their expressions, an analogous calculation follows for b2 |Ψ〉 = 0. Hence, the
wavefunction |Ψ〉 is annihilated by Hosc. By uniqueness of the ground state, this must be the ground state
for this system. We need only work out the normalization constant. This can be done most efficiently by
writing the density matrix for this state. We will use the property that for density matrices their trace
equals 1 to obtain the explicit form for A. We will also obtain a useful connection to thermal properties of
the system.

3.2 Computing the temperature of the system

Let us first highlight the usefulness of the density matrix approach. The formalism will allow us to later
conveniently talk about restricting attention to only one half of the coupled harmonic oscillator system, i.e.
one of the cavities. This is done by performing the mathematical process of tracing over the Hilbert space
of one of the subsystems. The idea is to trace out the degrees of freedom of the whole system which we do
not have access to. We shall do this once we compute the density matrix for the full system. Although the
state of the full system is pure as we shall justify below, the state which is described by the reduced density
matrix is mixed. We can interpret this as coming from the fact that when we trace over the Hilbert space
of one half of the coupled harmonic oscillator system, we do not have precise information about that part of
the system anymore, and so the resulting state becomes a statistical ensemble.

Tentatively, we write the density matrix of the full system in the ground state of the coupled Hamiltonian
as

ρ = |Ψ〉〈Ψ| (24)

This is the right form for the density matrix if the state is pure. Purity of the state can indeed be checked
by verifying directly using the expression (22) that ρ2 = ρ.

A density matrix should always have trace equal to 1. To compute A, we impose this condition and
compute:

1 = Tr(ρ)

A2
∑
n

ξ2n =
A2

1− ξ2

∴ A =
√

1− ξ2

(25)

Now that we have the normalization factor, we can write down the density matrix describing the ground
state of the Hamiltonian Hosc:
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ρ = (1− ξ2)
∑
n,m

ξnξm|n, n〉〈m,m| (26)

When we restrict our attention to one of the cavities, i.e. one half of the coupled harmonic oscillator
system, we obtain a reduced density matrix which is also a thermal density matrix for that subsystem.
Without loss of generality, due to the symmetry of the system, let us focus on oscillator 1. To do this, we
trace over the Hilbert space of oscillator 2 to obtain the reduced density matrix

ρ1 = Tr2(ρ)

= (1− ξ2)
∑
n

ξ2n|n〉〈n| (27)

It is worth noting that the tracing out of one of the subsystems is intended to be useful for cases when
we do not have access to that part of the system. This mimics the way in Rindler space, an observer in
one wedge of the Rindler space is causally separated from the other wedge, and so does not have (full)
information about the other wedge. Acknowledging the missing information is what is being represented by
the process of tracing.

The density matrix obtained in (27) can in particular be taken as a thermal density matrix. From this
form, we would expect there to emerge a physical temperature. To see what this temperature would have
to be, we can match the expression obtained in (27) to the general form of a thermal density matrix which
describes statistical mixtures presented as a thermal distribution. With β = 1

kBT
, the matrix should take

the form

ρ1
n,n =

e−β~ω(n+ 1
2 )∑

m e
−β~ω(m+ 1

2 )
= (e

β~ω
2 − e−

β~ω
2 )e−β~ω(n+ 1

2 )

= 2 sinh (
β~ω

2
)e−β~ω(n+ 1

2 )

(28)

Comparing (27) and (28), we can deduce

ξ2n − ξ2n+2 = e−β~ωn − e−β~ω−β~ωn

∴ ξ = e−
β~ω
2

(29)

Taking log of both sides, we obtain

2 log ξ = − 1

kBT
~ω (30)

∴ T = − ~ω
2kB log ξ

=
~ω

2kB log 1
ξ

(31)

This is the physical temperature we expect to find when we carry out the necessary measurements,
which we will discuss in detail in Section 4. What is particularly interesting about this is that we associate
the temperature with the entire system, when in fact measurement of only one of the subsystems is what
produces the temperature. This is the only way it makes sense to talk about the temperature of the system
if we want to be able to measure it using the methods we outline. The reason for this will become clear once
we introduce the final piece in our analogy: a two-level system (atom) which serves as a detector.
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Going back to the theoretical picture, we see that by tracing over the part of the system only related to
oscillator 2, we have obtained a mixed state. This can be shown by checking that ρ2 6= ρ for the reduced
state in (27). Additionally, the fact that after doing the tracing the resulting state is mixed tells us that the
initial pure state was an entangled state. Thus, it makes sense that by tracing, we have lost some information
about the full system.

The above discussion suggests that entanglement is significant in the examination of temperature in this
system. With this in mind, we note that a useful concept related to thermal properties of the system is
entanglement entropy. It is defined as S = −Tr(ρ log ρ), where ρ is the reduced density matrix of a subsystem,
in our case oscillator 1. Entropy of entanglement can be understood as a way to quantify entanglement in
the full system. For the mixed state (27) of one half of the coupled harmonic oscillator system, we compute

S = − log (1− ξ2)− log ξ
2ξ2

1− ξ2
(32)

The fact that S 6= 0 for the reduced density matrix proves that the state associated with this matrix is
not pure. This could of course also be checked by computing that ρ2 6= ρ for the reduced state. In addition,
what we obtain in (32) is the same as the usual thermal entropy corresponding to this mode. This can
be attributed to the fact that the reduced density matrix is diagonal. As we shall see later, in the aspect
of entanglement entropy the coupled harmonic oscillator system differs somewhat from the Rindler space
picture. In the latter system, we will also be able to talk about entropy of entanglement, but unlike in this
situation, the expression will be a sum that does not converge to a finite value. Nevertheless, the fact that
the entropy of entanglement is non-zero, as we shall see, will be enough to indicate that there is entanglement
present between the two Rindler wedges. We will return to these ideas in Section 5.

4 Measuring the photon number

We already know from Section 2 that coupled optical cavities is what is used to model the coupled harmonic
oscillator system described in detail above. Now that we understand the theoretical origin of the temperature
which arises in this system, we need to discuss how to experimentally measure it. We shall do this by adding
another element to the pair of optical cavities: a two-level system represented by an atom. It can be in an
excited or in a ground state, depending on whether it has absorbed or released a quantum of energy. The
theory needed to describe this new development is captured by the Jaynes-Cummings model, as we shall see
in this section.

4.1 Introducing a two-level system

We introduce a two-level system which is characterized by two parameters: ω0 and Ω. ω0 is the atomic
transition frequency dictating the spacing between the ground state and the excited state, while Ω determines
how the coupled harmonic oscillators (optical cavities) interact with the two-level system. The setup is
illustrated in figure 5 adapted from [5]. We assume the two-level system only interacts with the coupled
system via cavity 2. The reason we need to implement this assumption is because if we directly coupled the
atom to both cavites at the same time, we would be faced with needing to model a system which has the
atom on one side half of the time, and on the other side the other half of the time. This is not a reasonable
experimental setup, so we need to pick a side which we place the atom on and so with which to establish
coupling.

We can view placing the atom in one of the cavites as instantaneously decoupling the oscillators and
“measuring” one of them. By this action, we mean allowing the two-level system to interact with the cavity.
By symmetry, we have without loss of generality picked cavity 2 to be the one which is being interacted
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Figure 5: An optical cavity with an atom (two-level system).

with. Despite this simplification, we still have the parameter ξ incorporated into the state which the system
starts in. This will later help us calculate the temperature from experimental results.

First, we need to define additional operators associated with the two-level system, which is described by
either being in its ground or excited state, given by |g〉 and |e〉 respectively. The required operators are:

σ̂+ = |e〉〈g|
σ̂− = |g〉〈e|
σ̂z = |e〉〈e| − |g〉〈g|

(33)

The modified Hamiltonian which now includes interaction with the two-level system takes the form

Hcoup
JCM = ~ω1(a†+a+ +

1

2
) + ~ω2(a†−a− +

1

2
)︸ ︷︷ ︸

Hosc

+

Hatom︷ ︸︸ ︷
1

2
~ω0σz + ~Ω(σ+a2 + σ−a

†
2)︸ ︷︷ ︸

Hint

(34)

This Hamiltonian has the familiar Hosc term as well as two additional terms. Hatom models behavior of
the atom as would be the case if no cavities were present. Hint models the interaction between the two-level
system and cavity 2. Frequencies ω1 and ω2 are as in Section 3.

We begin in the ground state of the coupled harmonic oscillator and the ground state of the two-level
system. This state is written as

|Ψ〉 =
∑
n

cn|n, n〉|g〉

cn =
√

(1− ξ2)ξn, ξ =
ω1 − ω2

ω1 + ω2

(35)

We want to know what happens when we let this state evolve in time under Hcoup
JCM. We know already

that Hosc annihilates |Ψ〉. The rest of the Hamiltonian we can treat by considering its effect on each 2 × 2

12



subspace (except for the 1×1 one with just |0, 0〉|g〉) consisting of basis vectors |n, n〉|g〉, |n, n−1〉|e〉, where
|e〉 is the excited state of the atom.

Fixing n, we look at the nth subspace. We will call the part of |Ψ〉 which corresponds to this subspace
|ψn(t)〉. We denote |i〉 = |n, n〉|g〉 and |f〉 = |n, n− 1〉|e〉. Then with general coefficients we can write

|ψn(t)〉 = ci(t)|i〉+ cf (t)|f〉 (36)

We now solve the time dependent part of the Schrödinger equation with Hint as the Hamiltonian that
produces the time dependence. This is sufficient since Hatom merely flips the sign of |g〉 and multiplies it by
a constant, thus merely providing an overall phase that can be disregarded. The phase can be disregarded
because we are interested in this process to find the probability that the state will evolve into something
involving |e〉, which will be unaffected by a constant phase after taking absolute value later on. Then,

i~
∂|ψn〉
∂t

= Hint|ψn〉 (37)

Since |i〉 and |f〉 are independent, we match their coefficients once we apply the above equation and get

ċi = −iΩ
√
ncf

ċf = −iΩ
√
nci

(38)

Combining these with initial conditions from |0〉coupled given by ci(0) = cn and cf (0) = 0, we get

c̈i + nΩci = 0

∴ ci = cn cos (Ω
√
nt),

(39)

and similarly
∴ cf = −icn sin (Ω

√
nt). (40)

We finally write

|ψ(t)〉 = c0|0, 0〉|g〉+

∞∑
n=1

cn[cos (Ω
√
nt)|n, n〉|g〉 − i sin (Ω

√
nt)|n, n− 1〉|e〉] (41)

Then, we can just read off the probability of the atom being in the excited state as
∑∞
n=1 c

2
n sin2 (Ω

√
nt).

Using cn = (
√

1− ξ2)ξn, we can write the probability of the two-level system going into the excited state as

Pexc = (1− ξ2)

∞∑
n=1

ξ2n sin2 (Ω
√
nt) (42)

4.2 Measuring the temperature

Now that we have obtained an expression for the probability of measuring the atom in an excited state,
we can use this information to suggest a way to extract the experimental value of the temperature of the
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subsystem associated with cavity 2. (Note that now cavity 2 plays the role of oscillator 1 in Section 3.) We
can read off the probability values for measuring the atom in an excited state and n photons in cavity 2 as

P n
exc = (1− ξ2) ξ2(n+1) sin2 (Ω

√
n+ 1 t) (43)

With all of this information, we can perform many measurements of the two-level system, each time
preparing the full system in the same way to be in state (35). With the experimental results of the fraction
of all trials which result in n photons and an excited atom, we obtain a value for P n

exc and n. Using the
formula (43), we obtain a value for ξ. As we derived in (31), it only depends on ~, kB , ω, and T . The first
three of these quantities we know already, so we can work out T in terms of known constants.

Alternatively, we do not need to know what Ω is since we can just take the measurement when probability

is maximum. This occurs when t is such that sin2 (Ω
√
n+ 1 t) = 1, or when t = (2m+1)π

2
1

Ω
√
n+1

, m ∈ Z≥0.

In that case, we can take measurements at one of the times we just noted, using the same setup during each
trial. To verify that the two-level system is indeed in the excited state, we can wait for a time of order 1

Ω
[7] for an emission of a photon to confirm that the system was indeed in the excited state, and has now
transitioned to the ground state. Using the value of the fraction of all measurements that resulted in an
excited atom with n photons in cavity 2, we can compute probability and hence temperature using (43).

Using the formalism developed in this section, we can finish explaining why this way of attributing a
temperature to the full system is the only way it makes sense to do so given our methods, despite the fact
that it seems to only take into account one of the two subsystems. As we saw above, the atom is coupled
directly to one of the cavities, and it is not really feasible to couple it to both cavities at the same time.
Then, when the atom, understood now as the detector, “makes a measurement”, it interacts with only the
cavity to which it is coupled. In this setting, there is no way for it to measure what is happening with the
other cavity, and in general in any experimental setup we will always have to stay ignorant about some of
the degrees of freedom present to gain certainty about one part of the system. This is the scenario in which
temperature arises, and it expresses our ignorance about some part of the full system.

5 The Unruh effect

Now that we have developed the tools to study the cavity QED system, we can return to the system which
was of interest to us in the first place: a uniformly accelerating observer (detector) in Rindler space. In
this section, we will look closely at the mathematical description of this system. We base our discussion on
the approach found in [1]. Coupling will arise implicitly between regions of Minkowski spacetime which are
causally separated but still interacting by virtue of being permeated by the same scalar field. Throughout
this section, we will point out parallels between this system and concepts mentioned in the preceding sections.
Note that we will be working in the system of units where the speed of light is c = 1, and that we will be
using the signature (+,−,−,−) for the Minkowski metric.

Minkowski spacetime has line element given by

ds2 = dt2 − dx2 (44)

Note that we only write the spatial coordinate as x. This is because in Rindler coordinates, the y and
z coordinates remain unchanged by the transformations, so we might as well focus on the one dimensional
spatial picture.

The coordinate and wedge structure is depicted in figure 6 reproduced from [1]. We are interested in
looking at two of the four wedges into which we divide Minkowski space: wedges R and L. These wedges are
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referred to as Rindler space, and we denote them collectively by R.

Figure 6: Splitting Rindler space into wedges.

In the right Rindler wedge R where x > |t|, we can use the coordinate transformations

t =
1

a
eaξ sinh aη

x =
1

a
eaξ cosh aη

(45)

u = η − ξ, v = η + ξ

a > 0, −∞ < η, ξ <∞
(46)

to rewrite the line element as

ds2 = e2aξdudv = e2aξ(dη2 − dξ2) (47)

We should establish a few features about the new coordinates: η acts as the time coordinate and ξ as

the spatial coordinate. Using ū = − e
−au

a , v̄ = eav

a , we can define event horizons ū = 0 and v̄ = 0 on the
coordinate diagram since Rindler observers approach but do not cross these lines.

Similarly, we can represent the left Rindler wedge L where x < |t| by reversing the signs of (45):
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t = −1

a
eaξ sinh aη

x = −1

a
eaξ cosh aη

(48)

We want to learn about the ground state of the system. To do this, we can take a similar approach to
what we did in Section 2: we shall quantize the scalar field φ. It has to satisfy the Klein-Gordon equation
in this space, so

�φ =

(
∂2

∂t2
− ∂2

∂x2

)
φ = 0 (49)

We can view this relation as an analogy to the scalar fields in an optical cavity satisfying the Maxwell
equations - the form of the Klein-Gordon equation is similar to the wave equations derived from Maxwell
equations.

Since the transformation from (t, x) to (η, ξ) is conformal, and the Klein-Gordon equation is conformally
invariant [1], we directly obtain

(
∂2

∂η2
− ∂2

∂ξ2

)
φ = 0. (50)

The solution to this equation is given separately in R and L, and by restricting the support of the distinct
parts of the solution to their own regions, we write the complete set of solutions as

Ruk =

{
1√
4πω

eikξ−iωη in R

0 in L
(51)

and

Luk =

{
1√
4πω

eikξ+iωη in L

0 in R
(52)

where ω = |k| > 0, −∞ < k < ∞. The set of solutions also includes their complex conjugates, but we
do not write them out explicitly here since they can be obtained by simply taking the complex conjugate
of (49) and (50). These modes satisfy the necessary normalization conditions (ui, uj) = δi,j , (u∗i , u

∗
j ) =

−δi,j , and (ui, u
∗
j ) = 0, where ( , ) denotes scalar product.

Now we note that ∂η is a future-directed Killing field in R, while ∂−η is a future-directed Killing field in
L [1]. We want the solutions in both wedges to have positive frequency relative to their respective future-
directed Killing fields (since we need a notion of positive energy in each wedge). On their support, the modes
satisfy

∂η(Ruk) = −iω (Ruk)

∂(−η)(
Luk) = −iω (Luk)

(53)

This set of so called Rindler modes can be contrasted with the Minkowski set of modes which are valid
solutions of the Klein-Gordon equation on the entire Minkowski space, as opposed to only on the R and L
wedges as is the case for the above constructions. The Minkowski modes can simply be written as
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ūk =
1√
4πω

eikx−iωt (54)

with ω and k as before. The Rindler and the Minkowski modes each define a set of raising and lowering
operators. At this point, it is important to note the parallel between these two sets, and the sets we obtained
when we were discussing coupling in the previous sections. The Minkowski modes are like the usual photon
number modes (of the type |n,m〉), while the Rindler modes are like the coupling modes of the coupled
harmonic oscillator.

Due to completeness and orthogonality of our sets of modes, we can expand the scalar field φ in terms
of two different sets of raising and lowering operators. The first set is {ak, a†k}, which correspond to the

Minkowski space M and apply to the entire space. The other set is {b(1)
k , b

(1)†
k , b

(2)
k , b

(2)†
k }, defined on R and

L. The superscript (1) associates an operator to the L region, while (2) associates it to the R region. We
note that the Hilbert space is the same in either representation since the inner product is the same, but its
interpretation as a Fock space will differ between M and R.

Using this, we can expand φ in two ways:

φ =

∞∑
k=−∞

(
akūk + a†kū

∗
k

)
and φ =

∞∑
k=−∞

(
b
(1)
k

(
Luk

)
+ b

(1)†
k

(
Lu∗k

)
+ b

(2)
k

(
Ruk

)
+ b

(2)†
k

(
Ru∗k

)) (55)

These two expressions are related by a Bogoliubov transformation as outlined in [8].

Similarly, we have two vacuum states |0M〉 and |0R〉 for Minkowski and Rindler spaces respectively. Since
these are ground states, they must satisfy

ak|0M〉 = 0

b
(1)
k |0R〉 = b

(2)
k |0R〉 = 0

(56)

We must note that these vacuum states are not the same. To see why this is the case, consider the Rindler
modes at t = 0. They only have support on the half-line, which means it is not possible to express this mode
using only positive-frequency plane waves in M since we need to annihilate the mode in the necessary half
of the line. Hence, Rindler annihilation operators which are used to define |0R〉, have to be superpositions
of Minkowski creation and annihilation operators, so the same state will not be annihilated by both sets.
This shows the vacuums are not the same.

Since ∂±η are Killing vector fields, we know that a Rindler observer will be static with respect to or-
bits along ∂±η. This observer will detect no particles in the Rindler vacuum. However, when traveling
through Minkowski vacuum, from the above discussion about superpositions of positive and negative fre-
quency modes in the expression for Rindler modes, we expect that our accelerating observer will detect
particles in Minkowski vacuum.

To analyze this phenomenon mathematically, we first find a set of modes which share the vacuum state
with the Minkowski modes but which have simpler relations to the Rindler modes. We do this by first
taking the original Rindler modes, extending them analytically to the entire spacetime, then expressing
this extension in terms of the original Rindler modes. At the end of the process, we obtain the properly
normalized extended modes:
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Extension of Ruk: d
(1)
k =

1√
2 sinh (πωa )

(
e
πω
2a

(
Ruk

)
+ e−

πω
2a

(
Lu∗−k

))
Extension of Luk: d

(2)
k =

1√
2 sinh (πωa )

(
e
πω
2a

(
Luk

)
+ e−

πω
2a

(
Ru∗−k

)) (57)

Denoting by c
(1,2)
k , c

(1,2) †
k the annihilation and creation operators associated with the new modes, we can

rewrite the scalar field as

φ =

∞∑
k=−∞

(
c
(1)
k d

(1)
k + c

(1)†
k d

(1)∗
k + c

(2)
k d

(2)
k + c

(2)†
k d

(2)∗
k

)
(58)

We can obtain the relations between new and old annihilation and creation operators directly from the
relations between the new and old sets of modes:

b
(1)
k =

1√
2 sinh (πωa )

(e
πω
2a c

(1)
k + e−

πω
2a c

(2)†
−k )

b
(2)
k =

1√
2 sinh (πωa )

(e
πω
2a c

(2)
k + e−

πω
2a c

(1)†
−k )

(59)

These are called Bogoliubov transformations, and they are mathematically analogous to the transforma-
tions between the two sets of operators in Section 3 associated with the coupled harmonic oscillators.

The vacuum state for these new modes is the same as the one for the old positive-frequency Minkowski
modes. This is because the old Minkowski positive-frequency modes with k > 0 satisfy ūk ∝ e−iω(t−x) and
are analytic and bounded for complex (t, x) as long as Im(t − x) ≤ 0. We can say the same for our new

modes d
(1)
k as long as we stay in the upper-half complex (t− x) plane.

Similar arguments follow to determine that h
(2)
k are analytic and bounded in the lower-half complex

(t+x). This leads to the conclusion that the new modes h
(1,2)
k may be expressed purely in terms of positive-

frequency Minkowski plane-wave modes uk. This directly implies that the two sets of modes share a vacuum
state, hence

c
(1)
k |0M〉 = c

(2)
k |0M〉 = 0 (60)

Finally, we take a Rindler observer in R who is uniformly accelerating, hence moving along a constant ξ
curve. Since their proper time is proportional to η, we expect that their vacuum corresponds to |0R〉. Hence,
we expect them to be able to detect particles in |0M〉. We carry out the computation:

〈0M|Rn(k)|0M〉 = 〈0M|b(1)†
k b(1)|0M〉

=
1

2 sinh (πωa )
〈0M|e−

πω
a c

(1)
−k c

(1)†
−k |0M〉

=
e−

πω
a

2 sinh (πωa )

=
1

e
2πω
a − 1

(61)

18



This corresponds to a Planck spectrum with temperature T = ~a
2πkB

. More precisely, this is the temper-
ature that will be measured by a Rindler observer moving along the path ξ = 0. For any other constant ξ,
the acceleration felt is α = ae−aξ, so the measured temperature is T = ~α

2πkB
[1]. Detection of radiation in

this manner is what we refer to as the Unruh effect.

One final thing we want to confirm is that a notion of coupling is present in this scenario, in direct analogy
with the cavity QED system described earlier in the paper. To do this, let us compute the entanglement
entropy for the state |0M〉. It can be written as a sum of terms

S =
∑
ω

(
− log (1− ξ2)− log ξ

2ξ2

1− ξ2

)
(62)

As before, ξ = e−
β~ω
2 . We have to carry out the sum over all possible modes, i.e. over ω, so the sum

is infinite. This is because there are infinitely many pairs of points, one in each wedge, that are coupled to
each other as harmonic oscillators. This is the result of quantizing a scalar field in Rindler space. In the
cavity QED case, we only had two coupled oscillators, which is why our expression was finite.

However, note that each of the terms in (62) is positive since ξ < 1. Hence, the entropy of entanglement
satisfies S > 0, telling us that the full state is indeed entangled. Hence, our analogy holds here also between
cavity QED and Rindler space: there is a notion of entanglement present in both systems.

6 Conclusion

We have successfully computed the temperature detected in the vacuum state of M by a uniformly accel-
erating observer. Due to the similarity of transformations (18) and (59), mathematically, the interaction
between the R and L wedges is analogous to the coupling between the two cavities we studied in the preceding
sections. Hence, it makes sense to think of the two cavities as modeling the two wedges, and the temperature
observed in the case of cavity QED as analogous to the temperature being observed by a Rindler observer
in the context of the Unruh effect.

In Section 5, we pointed out that Rindler modes are like coupling modes in the coupled harmonic oscillator
case, and Minkowski modes are like the number modes. When we derived the ground state wavefunction
of the coupled system in (22), we saw that the number modes are present, but the coupling modes are not
(since (22) is annihilated by the operators b1 and b2 from Section 3). This was the reason we obtained a
thermal distribution when observing that ground state - we were counting the number modes. In a similar
manner, in the discussion in Section 5 we showed that in Minkowski vacuum, the Minkowski modes are not
excited while the Rindler modes are. Hence, it makes sense that a thermal particle distribution, and hence
a temperature, was obtained here also.

The Rindler space analysis then tells us that detection of particles can be observer dependent. By virtue
of the analogy pointed out above, a question arises. What exactly do we call a photon? Is it an excitation of
an individual cavity, or is it an excitation of the individual eigenmodes? In other words, are they excitations
of number modes (also Minkowski modes) or the coupling modes (also Rindler modes)?

That this question arises should not be surprising. In fact, we come across a similar problem throughout
the field of quantum mechanics, since we must always make a choice of basis when writing down a wave-
function. The basis choice determines what constitutes an excited mode. Similarly, when performing an
experiment, we must choose what it is we are measuring. For instance, we might tune our detector to detect
the emitted frequency ω, or ω1, ω2. This choice will determine whether a photon is detected or not. In
that sense then, and in line with the design of the theoretical detector in [8], a Minkowski observer is like a
detector tuned to detect frequency ω. Hence, what we think of as a photon is determined by what exactly
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is being measured by the tuned detector.

In this paper, we have outlined a theoretical experiment that we can use to measure the temperature
using the appropriately tuned detector, but it remains to be examined closer whether it is reasonable to
expect this to be a realizable setup in the setting of cavity QED. To make it realizable, we need to achieve a
measurable and hopefully convenient probability for detecting the needed state. Let us consider a suitable
value of ξ we can implement. Note that from (18) we know that it is always less than 1. Looking at (43), we
can differentiate to find the extremum. The reason this gives the maximum, not the minimum, is because
we can make the probability 0 by setting ξ = 0, meaning the local extremum has to be a maximum. In this

manner, we find that the value of ξ which gives maximum probability is ξ =
√

n+1
n+2 .

Let us consider a possible setting. If we want our setup to detect only one photon, we can set ξ =
√

2
3 ≈

0.816, and by running the experiment 100 times we obtain ≈ 14 instances of an excited atom with a single
photon in cavity 2. Then we use the procedure outlined in Section 4 to compute temperature from these
experimental results. If we wanted to detect a different value of n photons, we would increase the number
of trials to make the fraction of successes still detectable in an experimental setup. In comparison with
the enormous acceleration needed to produce a detectable temperature in the Rindler space scenario, the
cavity QED setup is much more accessible. Since we have preserved the essential mathematical and physical
aspects of the system, we expect analogous observations to hold for the Rindler space scenario, too.

We shall conclude this paper with an open question that is raised by the discussion above. Why does
there exist such a strong similarity in the mathematical description of the cavity QED system and the Rindler
space system, while only the latter has an explicit notion of acceleration associated to it? Acceleration of
the Rindler observer is directly responsible for the detection of particles in Minkowski vacuum, since as we
saw a Minkowski (non-accelerating) observer will not detect any. The hope is that there is a way to find
an “effective” notion of acceleration in the cavity QED system, although it must arise in a different way
than in the Rindler case. In the latter system, it comes directly from considerations of the metric describing
the space [1], but there is little hope of defining a metric for the cavity QED case since there are only two
“points” and an atom. Perhaps what needs to be done now is to reverse the approach taken in this paper
and instead view cavity QED using the formalism which has been developed for geometrically understanding
spacetime.
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